Error Estimates for the Euler Discretization of an Optimal Control Problem with First-Order State Constraints

نویسندگان

  • J. Frédéric Bonnans
  • Adriano Festa
چکیده

We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the L∞ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second order optimality condition, or a weaker one in the case where the state constraint is scalar, satisfies some hypotheses for junction points, and the time step is constant. Our technique is based on some homotopy path of discrete optimal control problems that we study using perturbation analysis of nonlinear programming problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Error estimates for parabolic optimal control problems with control and state constraints

The numerical approximation to a parabolic control problem with control and state constraints is studied in this paper. We use standard piecewise linear and continuous finite elements for the space discretization of the state, while the backward Euler method is used for time discretization. A priori error estimates for control and state are obtained by an improved maximum error estimate for cor...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Time discretization and quantization methods for optimal multiple switching problem

In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyze its rate of convergence. The error is of order 1 2 − ε, ε > 0, and of order 12 when the switching costs...

متن کامل

The Euler approximation in state constrained optimal control

We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2017