Error Estimates for the Euler Discretization of an Optimal Control Problem with First-Order State Constraints
نویسندگان
چکیده
We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the L∞ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second order optimality condition, or a weaker one in the case where the state constraint is scalar, satisfies some hypotheses for junction points, and the time step is constant. Our technique is based on some homotopy path of discrete optimal control problems that we study using perturbation analysis of nonlinear programming problems.
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملError estimates for parabolic optimal control problems with control and state constraints
The numerical approximation to a parabolic control problem with control and state constraints is studied in this paper. We use standard piecewise linear and continuous finite elements for the space discretization of the state, while the backward Euler method is used for time discretization. A priori error estimates for control and state are obtained by an improved maximum error estimate for cor...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملTime discretization and quantization methods for optimal multiple switching problem
In this paper, we study probabilistic numerical methods based on optimal quantization algorithms for computing the solution to optimal multiple switching problems with regime-dependent state process. We first consider a discrete-time approximation of the optimal switching problem, and analyze its rate of convergence. The error is of order 1 2 − ε, ε > 0, and of order 12 when the switching costs...
متن کاملThe Euler approximation in state constrained optimal control
We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2017